ReferênciasLivro texto e artigos disponíveis aqui |
1. Alberts B, J.A., Lewis J, et al. . Molecular Biology of the Cell. 2002. Disponível aqui
2. INCA, O que é o câncer.
3. Pecorino, L., Molecular biology of cancer : mechanisms, targets, and therapeutics. Fourth edition. ed. 2016, Oxford, United Kingdom: Oxford University Press. xviii, 375 pages.
4. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
5. Chatterjee, N. and G.C. Walker, Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen, 2017. 58(5): p. 235-263.
6. Turgeon, M.O., N.J.S. Perry, and G. Poulogiannis, DNA Damage, Repair, and Cancer Metabolism. Front Oncol, 2018. 8: p. 15.
7. Sakthivel, K.M. and S. Hariharan, Regulatory players of DNA damage repair mechanisms: Role in Cancer Chemoresistance. Biomed Pharmacother, 2017. 93: p. 1238-1245.
8. Lambert, S.A., et al., The Human Transcription Factors. Cell, 2018. 172(4): p. 650-665.
9. Lee, T.I. and R.A. Young, Transcriptional regulation and its misregulation in disease. Cell, 2013. 152(6): p. 1237-51.
10. Beishline, K. and J. Azizkhan-Clifford, Sp1 and the 'hallmarks of cancer'. Febs j, 2015. 282(2): p. 224-58.
11. Chu, S. and T.J. Ferro, Sp1: regulation of gene expression by phosphorylation. Gene, 2005. 348: p. 1-11.
12. Miyazono, K., Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8): p. 314-23.
13. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
14. Zhu, L. and A.I. Skoultchi, Coordinating cell proliferation and differentiation. Curr Opin Genet Dev, 2001. 11(1): p. 91-7.
15. Ruijtenberg, S. and S. van den Heuvel, Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle, 2016. 15(2): p. 196-212.
16. Cheng, L., C. Wang, and J. Jing, Cell Cycle Kinases in Osteosarcoma: Potential for Therapeutic Intervention. Curr Pharm Des, 2016. 22(31): p. 4830-4834.
17. Simabuco, F.M., et al., p53 and metabolism: from mechanism to therapeutics. Oncotarget, 2018. 9(34): p. 23780-23823.
18. Tornesello, M.L., et al., Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel), 2018. 10(7).
19. Khoo, K.H., C.S. Verma, and D.P. Lane, Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov, 2014. 13(3): p. 217-36.
20. Li, H., et al., Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis. Cell Death Differ, 2014. 21(9): p. 1493-502.
21. Chuang, J.Y., et al., Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J Cancer, 2009. 125(9): p. 2066-76.
22. Cai, Y., T. Cai, and Y. Chen, Wnt pathway in osteosarcoma, from oncogenic to therapeutic. J Cell Biochem, 2014. 115(4): p. 625-31.
23. Lo, H.C. and X.H.F. Zhang, EMT in Metastasis: Finding the Right Balance. Developmental Cell, 2018. 45(6): p. 663-665.
24. Nieto, M.A., et al., Emt: 2016. Cell, 2016. 166(1): p. 21-45.
25. Wang, J., et al., Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis. Clin Chim Acta, 2014. 433: p. 225-31.
26. Wen, X., et al., Matrix metalloproteinase 2 expression and survival of patients with osteosarcoma: a meta-analysis. Tumour Biol, 2014. 35(1): p. 845-8.
27. Shang, H.-S., et al., Deguelin Inhibits the Migration and Invasion of U-2 OS Human Osteosarcoma Cells via the Inhibition of Matrix Metalloproteinase-2/-9 in Vitro. Molecules, 2014. 19(10): p. 16588.
28. Levin, M., et al., Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. Biochim Biophys Acta, 2017. 1864(11 Pt A): p. 1927-1939.
29. Vos, H.I., et al., The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov Today, 2016. 21(11): p. 1775-1786.
30. Ye, S., et al., p53 overexpression increases chemosensitivity in multidrug-resistant osteosarcoma cell lines. Cancer Chemother Pharmacol, 2016. 77(2): p. 349-56.
2. INCA, O que é o câncer.
3. Pecorino, L., Molecular biology of cancer : mechanisms, targets, and therapeutics. Fourth edition. ed. 2016, Oxford, United Kingdom: Oxford University Press. xviii, 375 pages.
4. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
5. Chatterjee, N. and G.C. Walker, Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen, 2017. 58(5): p. 235-263.
6. Turgeon, M.O., N.J.S. Perry, and G. Poulogiannis, DNA Damage, Repair, and Cancer Metabolism. Front Oncol, 2018. 8: p. 15.
7. Sakthivel, K.M. and S. Hariharan, Regulatory players of DNA damage repair mechanisms: Role in Cancer Chemoresistance. Biomed Pharmacother, 2017. 93: p. 1238-1245.
8. Lambert, S.A., et al., The Human Transcription Factors. Cell, 2018. 172(4): p. 650-665.
9. Lee, T.I. and R.A. Young, Transcriptional regulation and its misregulation in disease. Cell, 2013. 152(6): p. 1237-51.
10. Beishline, K. and J. Azizkhan-Clifford, Sp1 and the 'hallmarks of cancer'. Febs j, 2015. 282(2): p. 224-58.
11. Chu, S. and T.J. Ferro, Sp1: regulation of gene expression by phosphorylation. Gene, 2005. 348: p. 1-11.
12. Miyazono, K., Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8): p. 314-23.
13. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
14. Zhu, L. and A.I. Skoultchi, Coordinating cell proliferation and differentiation. Curr Opin Genet Dev, 2001. 11(1): p. 91-7.
15. Ruijtenberg, S. and S. van den Heuvel, Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle, 2016. 15(2): p. 196-212.
16. Cheng, L., C. Wang, and J. Jing, Cell Cycle Kinases in Osteosarcoma: Potential for Therapeutic Intervention. Curr Pharm Des, 2016. 22(31): p. 4830-4834.
17. Simabuco, F.M., et al., p53 and metabolism: from mechanism to therapeutics. Oncotarget, 2018. 9(34): p. 23780-23823.
18. Tornesello, M.L., et al., Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel), 2018. 10(7).
19. Khoo, K.H., C.S. Verma, and D.P. Lane, Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov, 2014. 13(3): p. 217-36.
20. Li, H., et al., Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis. Cell Death Differ, 2014. 21(9): p. 1493-502.
21. Chuang, J.Y., et al., Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J Cancer, 2009. 125(9): p. 2066-76.
22. Cai, Y., T. Cai, and Y. Chen, Wnt pathway in osteosarcoma, from oncogenic to therapeutic. J Cell Biochem, 2014. 115(4): p. 625-31.
23. Lo, H.C. and X.H.F. Zhang, EMT in Metastasis: Finding the Right Balance. Developmental Cell, 2018. 45(6): p. 663-665.
24. Nieto, M.A., et al., Emt: 2016. Cell, 2016. 166(1): p. 21-45.
25. Wang, J., et al., Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis. Clin Chim Acta, 2014. 433: p. 225-31.
26. Wen, X., et al., Matrix metalloproteinase 2 expression and survival of patients with osteosarcoma: a meta-analysis. Tumour Biol, 2014. 35(1): p. 845-8.
27. Shang, H.-S., et al., Deguelin Inhibits the Migration and Invasion of U-2 OS Human Osteosarcoma Cells via the Inhibition of Matrix Metalloproteinase-2/-9 in Vitro. Molecules, 2014. 19(10): p. 16588.
28. Levin, M., et al., Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. Biochim Biophys Acta, 2017. 1864(11 Pt A): p. 1927-1939.
29. Vos, H.I., et al., The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov Today, 2016. 21(11): p. 1775-1786.
30. Ye, S., et al., p53 overexpression increases chemosensitivity in multidrug-resistant osteosarcoma cell lines. Cancer Chemother Pharmacol, 2016. 77(2): p. 349-56.